

A Five-Year Performance Evaluation of Environment Canada's Operational Regional Air Quality Deterministic Prediction System

M.D. Moran¹, J. Zhang¹, R. Pavlovic², and S. Gilbert²

¹Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada ²Air Quality Modelling Applications Section, Environment Canada, Montreal, Quebec, Canada

7th International Workshop on Air Quality Forecasting Research
 1-3 September 2015 College Park, Maryland

Talk Outline

- Model Characteristics and Outputs
- AQ Measurement Data Characteristics
- AQ Measurement Data "Cleansing"
- Selected 5-Year Evaluation Results for 2010-2014 Period
- Summary and Conclusions

GEM-MACH vs. GEM-MACH15 vs. GEM-MACH10

- GEM-MACH is a multi-scale chemical weather forecast model comprised of dynamics, physics, and in-line chemistry modules
- GEM-MACH15 is a particular configuration of GEM-MACH chosen for operational AQ forecasting; its key characteristics include:
 - introduced as operational forecast model in Nov. 2009
 - limited-area-model (LAM) grid configuration for North America
 - 15-km horizontal grid spacing, 58 vertical levels to 0.1 hPa
 - 2-bin sectional representation of PM size distribution (i.e., 0-2.5 and 2.5-10 μm) with 9 chemical components
 - output species include hourly fields of O₃, NO₂, and PM_{2.5} needed for Air Quality Health Index forecasts
- GEM-MACH10 is the same as GEM-MACH15 except with 10-km horizontal grid spacing and 80 vertical levels to 0.1 hPa
 - introduced as operational forecast model in Oct. 2012

Operational GEM-MACH Chronology: 2009-14 (Changes to Piloting Model, Code, Grid, Emissions)

- 1. Nov. 2009: GEM-MACH15 becomes operational
- 2. Mar. 2010: New emissions files introduced with modified primary PM_{2.5} spatial distribution in Canada
- 3. Oct. 2010: Piloting model: GEM15 → GEM-LAM15
- 4. Oct. 2011: New code version, new emissions (SET0)
- 5. Oct. 2012: GEM-MACH10 & GEM-LAM10 become operational, new emissions (SET1)
- 6. Nov. 2012: Reversion to SET0 emissions
- 7. Feb. 2013: New code version, 3 bug fixes
- 8. Nov. 2014: New GEM code, new GEM-LAM10

AQ Measurement Data Characteristics (1)

- Used archived near-real-time hourly O₃, PM_{2.5}, and NO₂ Canadian data from National Air Pollutant Surveillance (NAPS) network stations and hourly O₃, PM_{2.5}, and NO₂ U.S. data from AIRNow for 5-year period from 2010-14 (extracted as data pairs with accompanying model values from EC VAQUM evaluation system)
- Many U.S. O₃ monitors only operate during the "ozone season"
- AIRNow started transmitting U.S. NO₂ mmts in mid 2012
- AIRNow performs some quality control (QC) and some QC is performed on Canadian data upon receipt at CMC Dorval
- Included both urban and rural stations initially

AQ Measurement Data Characteristics: Time Variation of Number of Observations

Number of Observations Per Month, 2010-14

—O3 —NO2 —PM2.5

AQ Data Characteristics: Station Distribution

AQ Measurement Data Characteristics: O₃ Extrema

O₃ Observed Maximum by Station, 2010-2014

AQ Measurement Data Characteristics: NO₂ Extrema

NO₂ Observed Maximum by Station, 2010-2014

AQ Measurement Data Characteristics: PM_{2.5} Extrema

PM_{2.5} Observed Maximum by Station, 2010-2014

AQ Measurement Data "Cleansing" (1)

- Further data "cleansing" is required before AQ measurement data are used to evaluate model performance
- Step 1: Data completeness (representativeness data filter based on long-term availability of valid hourly measurements)
 - $^{\blacksquare}$ O₃ option 1 75% completeness over 5 years
 - $^{\bullet}$ O₃ option 2 75% completeness over 5 O₃ seasons
 - NO₂ option 1 75% completeness over 5 years
 - $^{\blacksquare}$ NO₂ option 2 75% completeness over 2 years (2013-14)
 - PM_{2.5} option 1 75% completeness over 5 years

If a station does not meet this check, **all** of its data pairs are removed from the 5-year evaluation data set

AQ Measurement Data "Cleansing" (2)

- Step 2: Daily range check ("non-flatness" data filter to avoid constant measurements throughout a day)
 - O_3 range > 1 ppbv per 24 hours
 - $^{\bullet}$ NO₂ range > 0 ppbv per 24 hours
 - $PM_{2.5}$ range > 0.1 ug m⁻³ per 24 hours

If a station reports constant or near-constant measurements for 24 hours, all 24 data pairs are excluded from the 5-year evaluation data set

The NO₂ range check is very "tight" because some remote stations can measure very low NO₂ concentrations for extended periods

AQ Measurement Data "Cleansing" (3)

- Step 3: Exceedance thresholds (extrema data filter)
 - $^{\bullet}$ O₃ exclude values < 0 ppbv or > 150 ppbv
 - NO₂ exclude values < 0 ppbv or > 150 ppbv
 - $^{\blacksquare}$ PM_{2.5} exclude values < 0 ug m⁻³ or > 200 ug m⁻³

Such values are rare and most are suspect, but they can have a material impact on statistical metrics

Elevated PM_{2.5} values can occur due to both wildfires and dust storms, but the current RAQDPS does not consider either emissions source

Impact of Data Completeness Check on Number of Stations Used in Evaluation

Species	All Stns	Option 1	Option 2
O_3	1,334	753	1,184
NO ₂	283	131	238
PM _{2.5}	871	623	N/A

Impact of Range and Threshold Checks on Number of Data Pairs Used in Evaluation for Five-Year 75% Data Completeness Data Set

Species	Range Check	Threshold Check	Both Checks
O_3	-0.1813%	-0.0007%	-0.1820%
NO ₂	-1.6737%	-0.0012%	-1.6749%
PM _{2.5}	-0.2031%	-0.0050%	-0.2081%

Example of Impact of Data Filtering on a Single-Station 5-Year O₃ Time Series

2010-14 O₃ Time Series at a U.S. Station *Before* Data Filtering

2010-14 O₃ Time Series at a U.S. Station *After* Data Filtering

Impact on Statistics of Removal of 21 NO₂ Observations > 200 ppb Out of 87,869 Observations

Impact of Forecast Lead Time on Model Skill → First 12 Hours Have Best Scores on Average

R - O₃ by Year and Season, 2010-2014

RMSE - O₃ by Year and Season, 2010-2014

Trends in Full-Domain Seasonal R and RMSE Scores over 2010-14 Period for 0-12 H Forecasts

R - By Year and Season, 2010-2014

Variation of Seasonal Correlation Coefficient R for O₃ by Region and Landuse, 2010-2014

R - O₃ By Year, Season, and Canadian Region

Variation of Seasonal Mean Bias for O₃ by Region and Landuse, 2010-2014

MB - O₃ By Year, Season, and Canadian Region

Variation of Seasonal Correlation Coefficient R for NO₂ by Region and Landuse, 2010-2014

R - NO₂ By Year, Season, and Canadian Region

Variation of Seasonal Correlation Coefficient R for PM_{2.5} by Region and Landuse, 2010-2014

R - PM_{2.5} By Year, Season, and Canadian Region

R - PM_{2.5} By Year, Season, and U.S. Region

Summary and Conclusions

- A 5-year performance evaluation has been carried out for the operational Canadian AQ forecast model GEM-MACH for the period 2010-2014
- GEM-MACH was updated 7 times during this period
- Near-real-time measurements of O₃, NO₂, and PM_{2.5} were used for the evaluation after careful filtering; different sets of stations were chosen depending upon the data completeness criterion that was used
- A trend towards improved model performance can be discerned, especially for R and RMSE scores
- Regional differences and urban-rural differences are evident in all performance metrics

Thank you for your attention

2010 O₃ Time Series, AQS Station in "Four Corners" Region of New Mexico

Impact of Data Filtering on NO₂ Seasonal RMSE Scores, 2010-2014

RMSE -NO₂ by Year and Season, 2010-2014

R - NO2 by year and season

RMSE – NO2 by year and season

R - PM2.5 by year and season

RMSE - PM2.5 by year and season

MB - by year and season

NMB - by year and season

